Distribusi Boltzmann dalam kimia , fisika , dan matematika (disebut juga Distribusi Gibbs [ 1 ] ) adalah suatu atau menyatakan untuk distribusi keadaan suatu sistem. Distribusi ini ditemukan dalam konteks mekanika statistik klasik oleh J.W. Gibbs pada tahun 1901. Distribusi ini menjadi dasar utama konsep . Distribusi Maxwell–Boltzmann merupakan distribusi Boltzmann yang digunakan secara khusus untuk menggambarkan kecepatan partikel gas. Secara matematis distribusi Boltzmann lebih umum dikenal sebagai .
Definisi
Distribusi Boltzmann untuk fraksi banyaknya partikel ke i yang memiliki energi E i , N i / N dinyatakan:
dimana adalah Konstanta Boltzmann , T adalah suhu (tertentu), adalah degenerasi (artinya, banyaknya tingkatan energi ; terkadang, lebih umum disebut sebagai 'keadaan' yang menyatakan tingkatannya, untuk menghindari penggunaan degenerasi dalam persamaan), N adalah jumlah partikel total and Z ( T ) adalah .
Dengan kata lain, untuk sistem tunggal pada suhu tertentu, hal ini memberikan probabilitas bahwa sistem mempunyai keadaan tertentu. Distribusi Boltzmann hanya berlaku untuk partikel pada suhu yang cukup tinggi dan massa jenis yang cukup rendah sehingga efek kuantum dapat diabaikan, dan partikel mengikuti . (lihat artikel untuk penurunan distribusi Boltzmann.)
Distribusi Boltzmann sering menggunakan lambang β = 1/ kT dimana β adalah sebagai . Lambang atau ,yang memberikan kemungkinan relatif dari suatu keadaan (unnormalised), disebut sebagai dan sering muncul dalam studi kimia dan fisika.
Ketika energi partikel hanya berupa energi kinetik
maka distribusi yang diberikan adalah Distribusi Maxwell–Boltzmann yang menyatakan kecepatan molekul gas, sesuai dengan yang telah diramalkan oleh Maxwell pada tahun 1859. Namun distribusi Boltzmann lebih menyatakan hal yang lebih umum. Sebagai contoh, distribusi Boltzmann digunakan untuk memprediksi variasi dari massa jenis partikel dalam medan gravitasi dengan ketinggian, maka . Pada kenyataannya distribusi ini berlaku ketika pertimbangan kuantum diabaikan.
Pada beberapa kasus tertentu, pendekatan kontinu bisa digunakan. jika terdapat keadaan g ( E ) dE dengan energi E untuk E + dE , maka distribusi Boltzmann menyatakan probabilitas didtribusi untuk energi:
maka g ( E ) disebut sebagai jika energi spektrum bersifat kontinu.
Partikel klasik dengan distribusi energi ini dikatakan mengikuti .
Dalam batasan klasik, i.e. besarnya harga atau kecilnya harga — maka fungsi gelombang dari partikel tidak tumpang tindih — baik dengan Bose–Einstein maupun menjadi distribusi Boltzmann.
Penurunan
- Lihat .
Referensi
- ^ Landau, Lev Davidovich ; and Lifshitz, Evgeny Mikhailovich (1980) [1976]. Statistical Physics . Vol. 5 (Edisi 3). Oxford: Pergamon Press. ISBN 0-7506-3372-7 . Pemeliharaan CS1: Banyak nama: authors list ( link ) Translated by J.B. Sykes and M.J. Kearsley. See section 28
Links keluar
- Derivation of the distribution for microstates of a system Diarsipkan 2009-05-05 di Wayback Machine .
Lihat juga